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We consider unbounded spin systems and classical continuous particle systems 
in one dimension. We assume that the interaction is described by a superstable 
two-body potential with a decay at large distances at least as r-Z(ln r) (2+~), 
c > 0. We prove the analyticity of the free energy and of the correlations as 
functions of the interaction parameters. This is done by using a "renor- 
realization group technique" to transform the original model into another, 
physically equivalent, model which is in the high-temperature (small-coupling) 
region. 

KEY WORDS: One-dimensional Gibbs systems, transfer matrix, Markov 
chains, renormalization group, decimation procedure, duster expansion. 

I N T R O D U C T I O N  

For  one-d imens iona l  lattice spin models and  systems of classical particles 
on  a line, it is expected that  the free energy and  the correlat ion funct ions  
are analyt ic  funct ions  of the interact ion parameters,  if the potent ial  decays 

fast enough with the distance. (]) A n u m b e r  of papers have been devoted to 
this subject (z-v) and  the analyt ici ty has been proven for a large class of 

models. This class however does not  include certain interest ing cases, such 

as u n b o u n d e d  spin systems, or systems of particles without  hard  core, with 
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a two-body interaction decaying asymptotically with the distance r as 
r-(2+~), r ~ 0. s 

In this paper  we are able to deal with such systems. We assume that 
the Hamiltonian satisfies the conditions that are needed for the validity of 
the well-known superstability estimates on the correlation functions, (9'm) 
The proof of the analyticity of the free energy for a one-dimensional lattice 
gas interacting via long-range many-body potential was given in Ref. 7. 
Here we extend the result to systems of unbounded spins and classical 
particles without hard core, when the potential decays at large distances at 
least as fast as r -2( lnr )  - 2 + '  and a superstability condition on the interac- 
tion is assumed. 

In Ref. 7 and in the present paper a renormalization group technique 
is used. The lattice is partitioned into blocks, and a suitable decimation 
procedure is performed over the block variables. It is then shown that, in 
the resulting block system, blocks are in fact weakly interacting, so that a 
standard way to prove the analyticity of the free energy applies. The system 
is transformed into a so-called polymer model, whose properties are then 
investigated by means of a cluster expansion. (1233) As a consequence of the 
weak coupling of a block system, the corresponding polymer model is in 
fact a gas with low activity. In Ref. 7 the bonndedness of the interaction 
energy among two semiinfinite subsystems is exploited to show that blocks 
are weakly coupled. We remark that thi s requirement is a common feature 
of most of the previous papers on this subject. For unbounded spin systems 
and systems of particles without hard core this condition is not satisfied, as 
the interaction energy among two half-lines can be arbitrarily large if the 
spin values, or the density of particles, are large enough. Therefore the 
weak coupling among blocks can be expected to hold only in a subset of 
the set of block configurations. We use the superstability estimates to 
overcome the difficulties arising from this fact. We show that block 
configurations giving rise to large interaction energy contribute in a negligi- 
ble way to the free energy. 

In carrying out our argument we prove a theorem on the exponential 
approach to equilibrium for Markov chains satisfying a weaker hypothesis 
than the Doeblin condition. We think that this theorem has some interest 
on its own and could be applicable in other situations. 

In the following section we describe our models, state the main results, 
and give a heuristic sketch of the proofs, underlining the main technical 
difficulties. A rigorous formulation of the ideas of Section 1 together with 

5 Note: It is known ~8~ that, also for the compact spin case, the free energy can be not analytic 
if the interaction decays only as r -2, but analyticity is expected to hold for interactions 
decaying faster. 
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detailed proofs are given in Sections 2 and 3. In the concluding remarks we 
discuss some possible extensions of our results. 

1. SECTION 1 

To each site of a one-dimensional lattice 7/we associate a spin variable 
taking values in a topological space Y, e.g., on the real line. 

A spin configuration in a region A c 7/ is a function sA:A-->Y A. Its 
value at x E Z will be denoted by s x. For any nonoverlapping regions 
AI, A 2 C ?7, A l A A 2 = ~, we shall denote by sa, V s~2 the spin configuration 
in A 1 U A2: 

Sml V SA2IA I ~- SAi , Sml V SA2IA 2 = am2 

The energy of a configuration in A c 7/will be a function from yA to 
of the form 

I~A(SA) = ~ ~(Sx) + 2 Jl~-~l(s~,s~) (1.1) 
x ~ A  x , y @ A  

x < y  

where ~ and Jr, r E 7/+, are real-valued continuous functions on Y, y2, 
respectively. The free measure p is a positive measure on ~, not identically 
zero. We shall use the notation uA(dsA)= I I ~ h , ( d s x ) ,  IA] = ~(A) for 
A C Z. The following two cases will be considered: 

1.1. Lattice Spin Models 

In this case Y = R,  u is a measure such that 

f ,(as)e-aS2< ~,  if a > 0 (1.2) 

and the one- and two-body interactions ~, Jr are continuous functions. We 
shall assume the following. 

(i) There exists a positive, nondecreasing real function F on 7/§ such 
-that 6 

I/As, s')l ~< Isl ]s'l/[r21n(r + 1)F( r ) I  
0.3) 

IrE(r)]-1 < 
r@Z + 

6 Note:  W e  migh t  as well a s s u m e  the more  general  condi t ion  

I Jr(s,  S')I < (Isl IS'I + K ) / [ r 2 1 n ( r  + l ) F ( r ) ]  

for some  positive cons tan t  K. All our  a r g u m e n t s  apply  to this case. 
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(ii) There exists A > 0, 8 ~ R such that, if A is any finite subset of ~, 

HA(SA) /> E (A[sx[ 2 -  ~) (1.4) 
x ~ A  

We shall refer to (1.4) as to the superstability condition. 

1.2. Systems of Classical Particles 

In this case 3s = U,~176 where, given a positive 0o, Yo describes the 
configurat ion in which the interval [0, Oo] is empty and Y, = [0, po]" is the 
set of configurations with n particles in the interval [0, Oo]. We define Isl = n 
if the spin variable s E Y,. A sequence s (k) in Y is said to converge to s E Y 
if there is k o such that for k ~ k o, Is(k)[ = [s I and the sequence s (k), k > k 0, 
converges to s in the usual topology of Yt,l" 

v is the measure v = (~),~176 where Vo(Yo)= 1 and n! G is the Le- 
besgue measure on Yn. 

The one- and two-body interaction are of the form 

~(s) = ~lsl + ~ v(l~ - '~jl) 
i,j=l 

;<Y (1.5) 

= E E v(l i- ,j + (x - y>01) 
i=l j=l 

if Is[, Is'] =~ 0, s = (~, . . . . .  •), s' = ( ~ , , . . . ,  ~m) ~(s)  = Jr(S,S') = Jr(s',s) 
= 0 if Is I = 0 where/z E R, z = e ~ is the fugacity and v is a real, cont inuous 

function on ~. 
We shall assume the following. 
(i) Iv(r)[ is bounded  by a nonincreasing ~(r) such that 

s176  + 1 ) d r <  oo (1.6) 

We remark that, by choosing 

F ( r ) =  (r21n(r + l)6[po(r- I ) ] } - '  

condit ion (1.3) is satisfied. 
(ii) the superstability condit ion (1.4) is satisfied. 
We shall consider the following set of complex perturbat ions of the 

Hamil tonian:  

VA(O~,SA) = i~=l(a)i E ~i($x) "[- E GIx-yt(Sxi ,sy) (1 .7)  
x~A x, y~A 

x <y 
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where ~0 i E C ,  i i ~b, G] are real-valued measurable functions on y, y2 such 
that 

(i) [G/(s,s')[ < Is I Is ' l / Ir21n(r + 1)ff(r)l  (1.8) 

where ff is a real function, nondecreasing, and 
- 1  

E [r f f ( r ) ]  < o o  
r ~ Z  + 

(ii) there exist A- > 0, g E ~ such that, if ~0 = maxl<i<d[~oil, A c g 

I~,('~,SA)l < ~ E (Ylsx[ 2+  ~)  (1.9) 
x ~ A  

The partition function with empty boundary conditions corresponding 
to the complex Hamiltonian HA(~0, �9 ) = HA(-) + VA(o~, �9 ) is then defined as 

Z,(a) = f "A (dsA)exp [ -  Ha(t~ sA) ] (I.I0) 

The main result of this paper can now be stated as follows: 

Theorem 1.1. Let ZA(o~ ) be defined as in (1.10) and assume that 
(1.2), (1.3), (1.4), or (1.6), (1.4) be satisfied. Then there exists a sphere 
E E C a, centered at the origin, such that 

3-(~0) = lim ln[Za(o~)]/[A [ (1.11) 
A ~ Z  L 

exists and is a holomorphic function of ~0 on E. 
We describe now the spin block model. Let L, n, p be positive integers, 

L odd. Ap is the interval of ?7, centered at the origin, t h a t  contains 
[Ap[ = (2fl + 1)L + 2pnL points. Consider the decomposition of Ap into 
consecutive blocks: 

A p = A _ p U B _ p U A  p+IU . . -  U B _ I U A o U  BoU . . .  U B p _ ~ U A p  

where [Ai[ = L and [Bi[ = nL. We shall also consider the decomposition of 
B i into n consecutive blocks of length L: 

Bi = 0 Bi,k, [Bi,k[ = L 
k = l  

In the following, in order to simplify the notation, we shall denote the 
spin block configurations sA,, SB, SBI, ~ by a i,/?i, fli,k, respectively. 

Given L, we decompose the interaction into a short-range term and a 
tail, that will be dealt with as a perturbation: 

Jr(s,s ')  = Jr<L(s,s ') "1- Jr>L(s,s ') (1.12) 

where j < L  = jr ,  1 < r <~ L, Jr <L = O, r > L for the (a) model and, for the 
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(b) model: 

i = l j = l  

where, given 0 < e < P0, v<L is a continuous function v<C(r) = o( r ) v ( r ) ,  
w i t h 0 <  a(r )  <<. 1, o ( r )  -- 1 f o r 0 <  r < L - e, o ( r )  = O for r >l L. 

The short-range term in the Hamiltonian will be denoted by 

H < L ( S A )  = ~ .  r + • Jl<_Lyl(Sx ,sy) (1.14) 
x ~ A  x , y ~ A  

x<y  

For technical reasons we shall put a cutoff on the spin values in the 
block model. Let N be a positive number. We shall denote by Y<u the set 

g),  by X N its characteristic function and, for any 
AC7/  

xY(sA) = H xN(sx),  2(dsa) = PA(dSA)xN(sA) 
x E A  

We define the "transfer matrix" TN,L(S, S') for s, s' E (Y< N) L by 

TN,L(S,S'  ) = exp[ - - h L ( s ) / 2  -- W L ( s , s '  ) - h L ( s ' ) / 2  ] (1.15) 

where 

hL( ) = 
(1.16) 

L 

i , j = l  

and its iterates by 

r k + l t s  St~ ; N tt k tt ~t t N,L t, , I = t'L (ds  )TTv,c(s ,s  )TN ,c ( s  ,s ) (1.17) 

where v N = ~ ,  L]" It follows from the previous definitions that 

TN, L (S,S' ) = TN, L ( R s ' , R s )  (1.18) 

where the reversed configuration Rs is defined by (Rs) i  = s L ~ for (a) 
models and (Rs)i -- O0 - s/_~ for (b) models, where P0 is the vector with 
s t _  ~ components all equal to P0- We denote by TN, L the operator on the 
Banach space ~((Y%N)L): 

TN,LU)(S ) = f pU(ds ' )  ru ,  L (S, S')U (S') (1. ( 19) 

The following properties, which will be used in Sections 2 and 3, are proven 
in Appendix A. 
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P.1. TN, L has an eigenvalue ~kN, L > 0, that exceeds in modulus all the 
other points in the spectrum, and corresponding unique left and right 
eigenvectors VN,L, VN, L. 6N,L (S) = VN,L ( Rs), VN,L (S) > O. 

We shall always assume the normalization 

f v F  (as) ~N,L (S)VN,c (S) = 1 (1.20) 

P.2. There exists L 0 such that for L > L0, X L = limN_,o~.N, r exists, 
and it satisfies )~L ~< (C) L, where C is a constant. 

P.3. Superstability estimates. Let /, be a measure on (Y<N) kL abso- 
N lutely continuous with respect to u[ l,kLl with density given by 

d~ a(s (1)) TN, L (s ('), s(2)) . . . TN, L ( S (~ - ') ,  s (k)) u (s (k)) 
N (S[  I,kL]) : a k--1 

dv[ 1,kL] N,L 

(1.21) 
where s (i) =Sil,kZ~l[i(i_l)L+~.icl, ~ (6N,L,exp(--hL/2)X-1/2}, U~ {VN, L, 
exp(--hc/2))~-I/2}. There exist No,Lo,A*,6* such that, if N > No, L 
> L o, A c [1,kL]: 

f v[t, kLl \~(ds[1,kLl \~) 
dr[ l,kL] 

- expE ,*t ] (1.22) 

We are now able to describe the strategy of the proof of the theorem. 
Given L, n, p, N the partition function of the block model in the volume 
Ap, with empty boundary conditions, can be written in the form 

p - I  

• I I  TN,L(ai, fli,%+,)exp[ W'~(SAp)] (1.23) 
i=--p 

where 

n - 1  
= & , )  I-[ 

k = l  

so that the complex interactions and the interactions due to the tail of the 
potential only appear in W '~. 

Let now J ~  be the subset of the configurations 

J h  = {s ~ y c :  [si] < Ml(i), i = 1 . . . . .  L} (1.24) 
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where l(i)-- (min[ln(i + 1 ) , l n ( L -  i +  2)]} 1/2. For any fixed M, it follows 
from (1.3), (1.6), (1.8) that all the terms contributing to W'~(sAp) can be 
made arbitrarily small if 0~ is small, L big enough, provided that all the 
block configurations are in J ~ .  In the following sections it will be shown, 
using the superstability estimates, that most of the statistical weight is in 
fact on the configurations in J ~ ,  so that the block model, with partition 
function (1.23), can be dealt with as a perturbation of a block model in 
which the only interacting blocks are the nearest neighbors. If we perform 
then the "decimation procedure" (average over the B block configurations), 
we reduce the partition function of this latter model to the form 

ea~,N= fv~(dSA~)exp(H~L(SA~)) 

p p -1  

(1.25) 

This model, however, is still nontrivial. We must show that distinct A 
blocks are weakly coupled, in order to perform a cluster expansion. We 
shall prove the following estimate: 

I T~,c (s, s ' ) /[  VN, L (S)gN, L (s'))t•,r ] -- 11 ~< exp(~l M2 -- ne-e2M2) 

if S,S' E J~ t  (1.26) 

that gives the weak coupling for n big enough. The estimate will be 
obtained by computing the rate of exponential approach to equilibrium of 

y c a Markov chain with state space ( < N )  , endowed with the measure pN L '  
transition kernel: 

Ps,s" = TN,L (S, S')�9 L (S)/[ gN,L (S')~kN,L] (1.27) 

and unique equilibrium measure (see P.1) VN./VN,CV~ v. We remark that we 
shall need estimates that are independent of the spin cutoff N and of the 
block size L, so that this computation is not trivial. In fact, as far as we 
know, there are no results in the literature allowing to prove that, in our 
case, the rate of exponential approach to equilibrium has a positive, 
uniform lower bound. We remark that, for example, Doeblin condition (is) 
is not uniformly satisfied under our hypotheses. 

2. SECTION 2 

In this section we shall prove an estimate on the approach to the 
equilibrium of the iterates of the transfer operator. Throughout this section 
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we shall keep the values of N and L fixed and we shall use the following 
abbreviated notation: 

rk(=,= ') = r~.L(S,S' ), k i> 1 

(2.1) 
h(=)  = hL(=),  W(= ,= ' )  = 

J =  = J h  , o(d=) = ,E (a=)  

Our main result is the following theorem: 

Theorem 2.1. There exist positive integers No, L 0 and positive con- 
stants ~1 and C2 such that for N > No, L > L0, and M > 1, 

- II < exp(s  2 - ne -~=~) Vs, s 'E J =  

(2.2) 
The crucial point in (2.2) is the independence of the right-hand side from N 
and L. Estimates depending on these parameters are quite easy to obtain. 

Our method is based on the introduction of a suitable Markov chain 
and on the study of its approach to the equilibrium. 

First we need an estimate on v and g. The probability measures 
proportional to exp [ -h ( s ) / 2 ]v ( s )o (d s )  and v(s)g(s)o(ds) are, respectively, 
the restrictions to the zeroth L block of the semiinfinite and infinite Gibbs 
measures corresponding to the potential truncated at distance L (see 
Appendix A). In the case of one-dimensional compact  spin systems with 
interaction decaying sufficiently fast it is well known (see, e.g., Refs. 16 or 
17) that these two measures are mutually absolutely continuous with 
R a d o n - N y k o d i m  derivative bounded by a constant. The following proposi- 
tion is an extension of this result to the unbounded spin case. 

Proposition 2.2. There exist positive constants c10 and c~l such that 
f o r N > N  o , L > L 0 ,  a n d M >  1: 

C~o'e-C"M=<~ v(s))t'/2/exp[- h(s)/2] < C,o e~HM= (2.3) 

for every s E J ~ t ,  where the positive constants N o and L 0 are introduced 
in Appendix A. The same estimate is of course true for g(s). 

Proof. Let us consider a probability measure /x on YL satisfying 
superstability estimates with constants A* and 8". From the definition 
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(1.24) we have that for M large enough 

L 

f f ( ~ " \ J = )  ~< E i f ( {= :  Is, l ~> Ml(i)}) 
i=1 

<. 2 ~ clexp[-A*ln(i + 1)M2/2 + 6*] < c2e -r (2.4) 
i = I  

where c 1, c 2, and c 3 are positive constants depending only on A* and 6*. 
Let now s ~ J ~ t  and let us denote by )~ the characteristic function of the 
interval [0, r]. We have, for 0 large enough: 

f / ~  ( d s ' ) e x p [ -  W(s,s')] 

~, f ff(ds')exp[- W(s,s')] II Xo~t,,(,+,)j'41~;I) 
A c [ I , L ]  i@A 

X I I  (1 - XoMt,.~j+,)j'~'(Isjl)) 
j~[i,L]\,~ 

< E 1-I exp{ 
AC[I, LI lEA 

~_~ f(i + k) [ ln( i  + 1)ln(k + 2)]1/202M 2} 
k>O 

x ,, (ds; )  

< exp{ ~" f(i  +j)OM2Iln(i + 2)ln(j + 2)]l/2 
j>0 

• II  {1 + c4exp[-A*O2M21n(i + 1)1 ) 
i > 0  

< cseCo M2 (2.5) 

where f(r) = [r21n(r + 1)F(r)]-1 [see (1.3)]. 
c4, c 5, and c 6, as well as all the constants c i of this section, are positive 

constants independent of N and L, for N > N o and L > L 0. 
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Now we shall give an estimate on the eigenvectors. From (1.23), (2.4) 
and (2.5) we get fors ,  s ' E J M , N > N  o , L > L  o. 

v (s)exp [ h(s)/2 ] / (  v (s')exp [ h(s') /2])  

= f p(dt)exp[- W(s,t)- h(t) /2]v( t )  

+ {fo(dt)exp[- w(,',t)-h(O/2]v(O } 
> c[ 'e-cgM2( (tit) 

J f  M D 

• exp[- w(,,0- ~(0/2 ]~(0/{ f~ (~0 exp[- ~(0/~ ]~ 
>~ c ;  'e- toM2(1 -- c2e- c3M2) 

/ 

X 
\ i>o  ] 

j > o  

> c~- le-c8M2 (2.6) 

If M is large enough, independently of N and L, it follows from 
superstability estimates and from the estimate given by (2.4) that 

3 < ( p ( d s ) ~ ( s ) v ( s )  (i) ~ ";J,~ 
(2.7) 

! <fJM •162162 (ii) 2 

• e x p [ - h ( s ) / 2 -  W(s , s ' ) -  h(s')/2] <~ 1 

On the other hand, it follows from (2.6) that there exists a constant E 
such that for s E J v  

Ec 7 'e -c8M2• --'/2exp [ - h(s)/2] <<. v(s) < Ec7ecsM2a-'/2exp[ -- h ( s ) /2 ]  

(2.8) 

By inserting the above inequalities in (2.7i) and by using (2.7ii), we get 

E < (2c~e2c~M:e ~9M2)'/2 
(2.9) 

E >~[(3)2c72e-2esM2e-c9M2]l/2 

where c 9 = y,~>o,j>of(i +j)[ ln(i  + 2)ln(j + 2)] 1/2 and by inserting (2.9) in 
(2.8) we finally get (2.3). 
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From now on we shall study the properties of approach to the 
equilibrium of the Markov chain introduced in Section 1. 

ProposRion 2.3. There exists a positive constant c~2 such that for 
N > N 0, L > L 0, M > 1, every positive integer n and every s,s' ~ Ja4 : 

Ps~s,/V(S')g(s ') < e -~,~a't~ (2.10) 

where P"  is the nth iterate of the stochastic kernel (1.27). 

Proof. We 

P,~,/v(s')5(s') = 

<~ 

have 
') 

c~oeZC,,M2f o(dt)p(dr)X-"+lexp[-  W ( s , t ) -  h(t)/2 ] 

• r"-Z(t, t ')exp[ - h(t')/2 - W(t',s')] 

= c oe2C,,M2fo(dt)o(dt')exp[- W(s, t )-  h(t)/2] 

• T~-2( t , t ' )exp[-h( t ' ) /2-  W(t',s')] 

+ fo(dt )o(dt ' )exp[-h( t ) /2]Tn-2( t , t ' )exp[-h( t ' ) /21  

• fo(dt)o(dr)exp[ - h(t)/2 ] T"- 2(t, t ')exp [ -  h ( t ' ) / 2  ] 

+ f p  (dt) p (dt') ~(t) r"-Z(t, t')v(t') 

C 2 e2C"M2cZe2C6M22 (" (dt') < 10 s 3j~, • iMP (dt) P 

• e x p [  - h(t)/2] T"-2(t, t ')exp[ - h(t')/2] 

+ 2t L p(dt)o(dt')v(t)T~-2(t,t ')v(t') 
M XJM 

")"2 ~176 ( exp[ 12 ~<.~lo ~ ~5~ ~ sup -h(t) /21/Xl/2v(t)  
t ~ J u  ) 

< .~10 ~ 9 .  `4 04c1'M2,'2~ 2c6M2~5 ~ < e~,~ M~ (2.11) 

where we have used the result and the method of proof of Proposition 2.2 
[see Eq. (2.5)] and superstability estimates for the probability measure 
proportional to p ( d t ) o ( d t ' ) e x p [ - h ( t ) / 2 -  h(t')/2]T"-2(t, t'). 

The following is an adaptation to our problem of methods used to get 
estimates on the rate of approach to the equilibrium of Markov chains from 
the knowledge of the distribution of the return time of a single state (see, 
for instance, Ref. 18). The idea consists in embedding our Markov chain in 
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another one with larger state space, where an auxiliary single state has been 
inserted. 

Given M sufficiently large, we introduce two stochastic kernels Asj 
and B~,,, where s ranges over (Y<N) L endowed with the measure 0 and 
over (3~<<N) k O {e} (where e is an auxiliary state) endowed with the mea- 
sure ~, which is equal to p when restricted to (~<~N) L and such that 
t3({e}) = 1. The kernels As,~ and B~, s are defined by 

_-- _ ~ A ~ L A ~  P,~ ( inf Pt~/XJ, , (s)xjM(s) ,  . ~ E ( < N )  
, , x t E f  M , 

A,e= (pgds'~[ inf Pt 'IX-- (s] " J \ JLtEJ~, ,st . . . .  
(2.12) 

= 

Be,= ( inf P,s]XzM(s) /  (p(ds')(  inf P,r 
' t E J M  ' ] ~ a  \ t @ J  M ' ! 

where 6~, s is defined according to the standard convention: 

f P (ds) 6;,,f(s) = f($),  for any funct ionf  

It is immediate to check that 

P~,,, = f ~ (d[') A,,;BLs, (2.13) 

We define an nonhomogeneous Markov chain with time t ranging over 1 Z 
and state space [(~.<~N)L,p] for integral times and [(Y<N)L U {e),/~] for 
half-integral times. The transition probabilities from the time t to the time 
t + �89 are given by the kernel A,,~ if t is an integer and by B;,, if t is a 
half-integer. It follows from (2.13) that the restriction of this Markov chain 
to integral times is defined by the kernel P,,,, with invariant measure 
~(s)v(s)p(ds). We shall denote by P the stationary measure (with respect to 
integral shifts) on the space of sequences (s~)~(l/2)z. P induces on s~ with 
integral i the measure ~(si)v(si)o(ds ). 

Now we want to evaluate the probability of large return times to the 
state e. In order to get the factorization result given by Theorem 2.1, we 
shall make use of the following: 

Proposition 2.4. There exist positive constants Cjs, c19 such that for 
a n y N > N 0 ,  L > L 0 ,  M > 1 and for anys ,  s ' E S  v 

where 

eP~,~,/ Ps < exp(cl8 M 2 -  ne-r M2) (2.14) 

eP~,'~,=P(si+i/2=/=e,i=O . . . .  , n -  1, Sn=S'[So=S ) (2.15) 
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Proo f .  Let us assume that n is odd, n = 2 m +  1 in order to fix the 
notation. For s I . . . . .  S2m ~ (E<N) L we define 

2 m -  1 

I~(S 1 . . . .  , S2m ) = e x p [ - h ( S l ) / 2  - h ( s 2 m ) / 2  ] I I  T~, ..... (2.16) 
i = 1  

Given 1 < i l <  . . -  < i ~  < m -  1 we have 

P((s2,, ,s2,,+i)  ~ J M  X J M ,  l = 1 . . . . .  k l~o = ~, so -- ~') 

; o ( d S l )  . . . o ( d s z m ) e x p [ -  W ( s ,  s l ) -  W(S2r n ,s  t) 

X II/~=,[i - -  X j  M ( s 2 i , ) X j  M ( s 2 i t + l ) ] ~ d ( s l , . . .  , S2m ) 

f o  ( d ~ l )  �9 �9 �9 p ( a ~ m )  e x p [  - W ( ~ , s O  - W ( s ~ m , ~ ' ) ] r  . . . .  , s ~ )  

f p ( d s i )  . . . p ( d s 2 m ) e X p [ -  W ( S ,  Sl)  - W(S2m ,S')] 
X I - Ik= 1 [ 1 - X f  M (s2is)Xp M (s2i I + 1)]  li//(s I . . . . .  S2m ) 

f i o (dS l )  , � 9  l~  I . . . . .  $2m ) 

f o ( a ~ , )  . . . o ( a s 2 m ) ~ ( ~ ,  . . . . .  ~ 2 ~ )  

f p ( d s 1 )  . . .  p ( d s 2 m ) e x p [  - W ( s ,  sI)  - W ( S 2 m , S ' )  ]~b(S1 . . . . .  S2m) 

['~,~ o-c3M2~k,~2,gc6M2/[ 1 o-2c9M2"~ ecl3M2-kclnM 2 
< t "~2" / ~s'- / t ~  ~ ) < (2.17) 

where we have assumed M large enough (this assumption can of course be 
removed in the final estimate) and we have used the fact that the probabil- 
ity measure proportional to +(s  I . . . . .  s 2 , ~ ) p ( d s O . . ,  o(ds2m ) satisfies the 
superstability estimates like in the proof of (2.4) and (2.5) in Proposi- 
tion 2.2. 

Let us fix a constant a, 0 < a < 1/2. By using (2.17) we get for 
S~ S t ~ J M  

e ( ~ { l l l  <-/<. m-1, (s2, , ,s2, ,+, )~tM x t ~  } > anlso--- s,s.= s') 

eCl3 Mz G [ m ~  --kCl4 M2 
2., t k  l e  

k=[an] " 

<-< e~'~M~e-([anl/2)ci4M2(l + e - (1 /2 )c '4M2)  m 

e ClsM2e - ncl6M2 

for M large enough. 

(2.t8) 
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Now we bound from below the probability 

e ( s i +  1 / 2  = el S i = S ,  S i+  1 = S t )  

with s and s' E J ~ t  �9 We have for s, s' E J ~ t  : 

e(si+~/2 = else = s, si+l = s') 

= A seBes,/Ps, ,  = inf P,,,'/Ps,s' 
' ' ' t ~'J-PM 

i n f t ~ j M e x p [ - h ( t ) / 2 -  W ( t , s ' ) -  h ( s ' ) / 2 ] v ( t ) - l v ( s  ') 

e x p [ - h ( s ) / 2 -  W ( s , s ' ) -  h ( s ' ) / 2 ] v ( s ) - ' v ( s ' )  

>/ C~o2e - 2(c9+c'3M2 (2.19) 

Let us define the events E, E c by 

E =  s i , i E � 8 9  1 < / <  : ( S 2 t , S 2 I + ] ) q S J M •  ) ~  

(2.20) 
E C is the complementary event of E. 

We have for s and s' ~ J M  : 

eP;,~, / P;~,, 

= P ( s i + l / 2 4 = e , i = O  . . . . .  n -  l l s 0 = s , s  n = s ' )  

<<. P ( E I s  o = s, s, = s') 

+P(s i+l /2 - - /=e , i=O . . . .  , n -  l l s o = s ,  s n = s ' , E  ~) 

ec ' sM2e-nc '6MZ' t - I1 - -  t,t'EjMinf P ( S i + l / 2 = e l s o  = .  . t, sn= t')ln/4--3/2 

<~ eC'sM2e-nc16M2 + (c~2e-2(Cg+Cu)MZ) n / 4 -  3/2 ( 2 . 2 1 )  

where we used estimates (2.18) and (2.19). The result follows from (2.21). 

Proof  o f  T h e o r e m  1. Let us introduce the following notation: 

177~ = P(s ,+i /2  = else~2 = e) 

eI~Te = P(si+]/2:/= e, i - -  1 . . . . .  n + 1, Sn+,/2 = e l s 1 / 2  = e) (2.22) 

qr e ----" P ( s 1 / 2  = e) = ke[ I  
k = l  
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We have 

elJ2ne = ; f  M X JM p ( ds) p ( ds') Be,seP~,~71As,,e 

= fJM x JM 0 (ds) 0 (ds') Be.,(ePs~,~? '/P,~,s' 1)Psi,,: 'As'.e 

< sup (eP~.,T1/P,~.,7 l) < e x p [ c , g M 2 - ( n  - 1)e -c'9M2] (2.23) 
S, S '  E J M  ' ' - 

by Proposition 2.4. 
On the other hand, by simple arguments similar to those used in the 

proofs of the above propositions we get 

el-Iele ~" ~103 .-2~--2cHM 2 ~  e --c9M2 (2.24) 

so that by applying the result of Appendix B, we have for N > N o, L > L o 
and M large enough 

In ; -  ~re] < exp(c2o M 2 -  ne -c2'M2) (2.25) 

where C2o and c21 are suitable positive constants. 
Let s E J M  �9 We have by the same argument used to prove (2.23): 

P(Si+l/2=/= e, i =  1 . . . . .  n - 1, sn+l/2 = e[so= s) 

exp(c18 M 2 -  ne -c'gM2) (2.26) 

Therefore we get for s E J~4 
n - I  

( e n A ) s ,  e -  ~ e  ~" (epnA)s,e + ~ (eerA)s e ( I ~ n s  - r  - -  "B'e) - -  ~e  ( e e r A ) s e  
r = O  ' r = n  " 

n-I 
"<< exp(cl8 M 2 -  ne-~l'M~) + 2 exp(c,aM a -  re -c~M~) 

r = O  

• exp[ c20 M 2 -  (n - r)e-C~'M21 

+ ~,  exp(e,8 M 2 -  re-~.9 M~) 
r ~ n  

< exp(c22M 2 -  ne -~,M~) (2.27) 

where we have used the fact that 

( e e U ) , ,  = l 
r = 0  

which is true since the state e is recurrent. 
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For s E J M  we have from Proposition 2.3 and Proposition 2.4 

(B~P")~,Jv(s)5(s) 

= P(s++,/2 =/= e, i = 1 , . . . ,  n, s,+, = slsl/2 = e)/v(s)g(s) 

= f/MO (ds') B~,,,eP/~,,Jv(s)g(s) 

= f ~ f  (d/) B~,,,(ee;',,/e;~, )[ e:,,/v( ~)~(,) ] 

exp(c,8 M 2 -  ne-~'+M~)e~'~M~ (2.28) 

We remark that 

% ~ ( B~P~ )es  = I)(S)~(S) (2.29) 
r = 0  

Indeed for any measurable set F c (Y<N)L: 

f? (ds )  Trelr~__o(Beer)e,s ] 

= P(s o E r, si+,/2 = e for some i < 0) = P(s o ~ F) 

By the previous estimates we get for s, s' E J M  : 

Ir~(s,~')/x~ ') -11 

= [ e L , / v ( s ' ) ~ ( s ' ) -  11 

ePs~.s'/V(S')V(s') n-1 [B e n - r - l ]  [(P~A~ - Tr~l/v(s')~(s' ) 
= , "[" E \ e }es ' k \  }s,e 

r = O  

--  q.l. e ~ (Be  P r  ) e s , / l ) ( s ' ) ~ ( s  t) 
g= gl 

< exp(ct8 M 2 -  ne-~,~M~)eC,~ M~ 

n - - I  

+ 2 exp[ Cls M 2 -  (n - r -  1)e-c~gM~]e~m~exp(c22M2-- re -~"~) 
r = O  

+ } exp(c,8.2_ re c9 >c+2 
r ~ t /  

< exp(clM 2 -  ne -~2M2) [] (2.30) 
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3. SECTION 3 

In this section we shall perform a polymer expansion of the complex 
partition function (1.23). This expansion will allow us to express the 
pressure as a convergent series of analytic functions and to prove then 
Theorem 1.1. 

Using the definitions of Section 1 and following notation, 

W~i,Bi,A,.+ l ( Oli ' ~i ' Ol, +. ,) 

~-" HAiUBiUAi+I((~'O, Oli V /~i V 0~i+ 1) - -  HA?LBiuAi+I(OLi ~/ /~i V OLi+ l) 

--  (1 - -  ai,_fl) [ HAi(d.d, . i )-  HA<L(a , ) ] /2  - (1 - 8 , + , . p )  

X [  HAi+,(~O, Oli+,)-- HAi<~L(0Li+ ,)  ] / 2  (3.1) 

wy,,~(sA,~) = HA u ~(~,  sA v ~ )  - HA('~,*A) -- H~(,~, ~) 
for every A, AC77, A A A = O  

(1.23) can be rewritten in the form 

ZAe,N (~) = fvAN (dSAp)exp [ -  hL(a_e)/2 - hL(a?)/2 j 

p - l  p - l  
)( I-I TN,L(Oli' ~ i 'OLi+I )  1-I exp[W~,.;t~.a,+,(ai, ~ i ' O L i + l ) ]  

i=  - p  i=  - p  
p-2 p 

• 11 I I  exp[W;,a:(%,aj)] 
i = - p  j=i+2 

p p - I  
X H H (1-Si , j)(1-Si- l , j )exp[Wffi i ,B,(ai , t~i)]  

i= -p j= -p 
p--2 p- I  

• I-I II expEW;, ,(B/,Bj)] 
i = - p j = i + l  

Given p, we define g? as the family of the sets C of the following 
types: 

C = { A, ,Aj}, - p  << i, j <.< p, j =/= i - l , i , i  + l 

C = { A , , B j } .  - p < i < p ,  - p < j < ~ p - 1 ,  j v a i ,  i - 1  

C = { B i , B j } ,  - p < i , j < < . p - 1 ,  j=/=i 

and ~a? as the family of the sets C of the form 

C =  {Ai ,Bi ,Ai+l} ,  with - p <  i <  p -  1 

For any F o g ?  toga e we put ~ ( F ) = ( i : B ~ [ . J c E r C  ) and 5~C(F) = 
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{ - p  . . . . .  p - 1 ) \  ~ (F). The partition function can then be expressed as 

p N  z.~,~(, , , )  = E f a.,u,~.~,c,~,,,, (dsA.,u,~j,~,.,,,) 
rc~p u% 

X e x p [ -  hL(OZ_p)/2 -- hz . (5 ) /2  ] 

X 1-[ TN,L(~,' ~i '~i+l) H ~)C(SC) 
i e ~ ( r )  c e r  

X I-[ Tn+l N,~ (~S' ~J+') 
j e ~ ( r )  

where 

(3.2) 

Iexp[ W;]~,.4j(ai ,aft]  - 1 if 

/ exp [ W)~,,g (a i , ~ ) ] + 1 if 

%(sc)lexp[ W~,# ( fl;, ~ )] 1 if 

[exp[  Wf~,B,,A;+,(a i , f l i ,a /+O] -- 1, if 

respectively. 
Using the notation of Section 1 for the largest eigenvalue XN,L and the 

corresponding left and right eigenvectors VN, L and VN,s of the transfer 
operator TN,L, we can make a further expansion of the partition function: 

ZAp,N (~) -- "N,L 
rc~p u ~  i c ~ ( r )  i 

x {exp[  - hr (e~_o) l  2 - h L ( % ) / 2  ] /XN,L } 

• 17 [r~,L(~,, B,,,~,+,)/~4,~'] 
i e ,~(r) 

n+l 

c er  i e~c (y ) \ l  

X [ 1 -- XM(OZi)XM(OZi+ 1) ]} 

c =  (A,,4} 
C = { A i , B j }  

(3.3) 
c =  {B,,Bj) 

C =  ( A i , B i , A i + l }  

• I1 tttr r.+,~.L (,~;,,~,+,)/[x~,t',~,,, L (,:,,),~,~ L (,~,+,)]-  l}  
iEY 

x xM(o~,)x.(o,,+,)) 

X 1-[ [ f)N,L (O~i){N,L (O~i+ I)XM (Oti)XM (OLi+ 1)] (3.4) 

where XM is the characteristic function of the set J ~ t .  
Now, following Refs. 11 and 7 and related references quoted in Ref. 7, 

we want to express the partition function (and the correlation functions) of 
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our spin system in terms of those of a polymer gas, i.e., a gas composed of 
infinitely many species of molecules interacting only via hard core exclu- 
sion. Our goal will be then to show that the polymer gas is in the "small 
activity region" for an appropriate choice of the integers M, L, and n and 
for ~0 small enough. This will imply, by means of standard methods, that 
the free energy (and the correlation functions) can be expressed as a 
convergent series of local quantities and have the desired analyticity 
properties. 

From now on, we shall often omit the indices L, N, in order to simplify 
the notation. 

We denote by Jp the family of the s e t s  (Ai,Ai+l} with - p  < i < 
p - 1. If C E Jp ,  and C = (Ai,Ai+l},  we define 

@c (sc) = 1 - XM (ai)XM (~ 1) (3.5) 

fp2(Sc) = (~n+l.l~.L ( a i , a i  +l) /[kf lV111)(Oli)~(Oli+l)]  _ 1}XM(OLi)XM(O~i+I) 

Given C ~ -@ U ~p U Jp we define the support of C, denoted by C as 

d= U ,UB, U A, 
J i c C  BiCC i : B i o r B i _ l C C  

Let us consider a quadruple R = (I'I,F2,F3,F4) with F l c @ ,  I' 2 
C ~ p ,  F 3 U IF' 4 c Jp .  We call R admissible if the following conditions are 
satisfied: 

(1) F 3 f'/I" 4 = O  

(2) if B i E  U c,  then ( A i , A ~ + l J ~ F 3 U F  4 
C~F1uF2 

Let now C, and C2 belong to U~=,Fi. We say that C, and c2 are 
connected if CI N C 2 ~ O. An admissible R--(F1,F2,F3,I '4)  is called a 

4 polymer if for C and C'  ~ Ui=lFi  there exists a sequence Cj , j  = 1 . . . . .  k, 
such that Cj E U4=1F~, C~ = C, C k = C', Cj and Cj+, are connected for 
l < j < k - l .  

Let R = (FI,F2,F3,F4) be a polymer and let I ( R )  be the set of those 
indices i such that either B~ ~ U c E r ,  ur2C or {Ai,Ai+l} ~ F 3 and J ( R )  
= { i : A  i ~ U c e r ,  urA~}. We define the support of R by 

= U (Ai U B i U Ai+ 2) U Aj (3.6) 
i ~ l ( R )  j E J ( R )  

For every polymer R the support /~ can then be decomposed as a 
union of disjoint intervals: 

k 

1~ = U Gi .  where G i = At,  or  

i=l (3.7) 
G i = Al~ U BI, U At,+l U �9 �9 �9 U Bti+m ' U At~+m,+t, m i >~ 0 
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We define a measure /~u on the configurations in /~ as ffU(ds,q)= 
k Hi= l tX~,(dsa,), where/~U denotes the probability measure on the configura- 

tions in G absolutely continuous with respect to v u with density given by G ,  

d~g ,,T,(~,)u,(,:,,) 
~g ~G 

+2 

i f  G = A t 

(3.8) 
I~l( O~l) T(oL1, fil , OLt+ l) " " " T(  ~ , fit+m , ~ m+ l)Ut+ m=l(~ ,) 

d,g (xm( "+ ')S~ ) 

if G = A  t tOB ttOAt+ 1tO . . .  tO Bz+ mtOAt+m+ 1 

where fft= gXM, --P + 1 <~ l< p, U t= vXM, --p <~ l <~ p-- 1 ff_p= Up 
=exp(--hL/2)/X 1/2, and ./U a is the normalization. We put J U  e = 

k IIi=lUUa,, if/~ k = U i = i O i  . 

Due to P.3 of Section 1, the correlation functions of the measures ~ff 
satisfy superstability estimates: 

f vkNA(dS,i\A) dl~ffdv---~(ds~) ~< exp[ - x~A(A*lsx,2-- 8*)] (3.9) 

for e v e r y L > L  o , N  > N o ,  R, AC/~ .  
We associate to a polymer R 

defined as 
its complex valued activity ~'W(R) 

~ N ( R ) = f  lzU(ds,q) I-[ cPc(sc) IX ~(G) ~ qg~(Sc) (3.10) 
C @ F  I U F  2 C E F  3 C E F  4 

One can easily verify that the partition function can be expressed in 
the following way: 

ZG, u (o~) = ~2p(. + 1)+,[ v exp( - hi2), XM~ -'/2 ]2(vff, XM) 2p-' 

X 1 + 2 ~] f f N ( R i )  (3.11) 
n>~ l R i , . . . ,  R n i 

where (., -) denotes the scalar product in L2[(~ ~L t, <N' ,vff] and 

X Iv e x p ( -  h/2),XMX--'/2]~{i:A'C'~}n{--P'P} } 
(3.12) 
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The term within square brackets in Eq. (3.11) can be interpreted as the 
partition function of a polymer system with hard core interaction and 
activity fU. Note that fiN is, in general, no translationally invariant. 
However, flY(R) = ~N(R') if R'  is obtained from R by a translation of a 
multiple of (n + I)L and both R and R'  do not intersect A U A 

�9 N -P P ' -  
In the sequel we shall esUmate ~" (R) and, consequently, ~N(R) 

uniformly in N and obtain a uniform estimate of the complex free energy 
by means of a cluster expansion. The result is contained in the following 
lemma: 

Lemma 3.1. For any given n,M large enough, we can choose 
Ll(n, M), ~01(L, n, M)  such that if L >1 Ll(n, M), o~ ~< wl(L, n, M)  for every 
polymer R (F1, F2, F3, F4)~ every N t> N O : 

I~'N(R)[ ~< I-I g,c(M,n,L, ~) (3.13) 
C EFIUF2UF3UF4 

where, for C ~ ~p 

= max( 12M2n2(1 + cod)ln(nL + 1)/[rcF(r = g~(M,n,L,w) L)],  

A* 6t~ exp [--~--~ M 21n(rc + 1)]} 

where r c is the number of blocks of the type A and B between V and V' if 
C = ( V, V') and C is a fixed constant, whereas 

gc(M,n,L,w) 

( I ' 1 = max 100M21n(nL + 1)n ln(L +- l ) f f (L)  + ~LA- + 100nL~03, 

6 C e x p ( - ~ A * M 2 ) , e x p [ ~ , M 2 - n e x p ( - C 2 M 2 ) ] }  (3.14) 

f o r C E ~ p  U J p .  
CI, C 2 are defined in Section 2. F(r) = min[F(r), F(r)]. 

Proof. We start from the expression (3.10) and, first of all, we esti- 
mate the factors 2 q~c, C E F4, using Theorem 2.1: 

Iq0~A,,A,+,}(~,,~,+,)I < exp(C,M 2 -  ne ~2M2) (3.15) 

From (3.15) we get 

I~N( R)l ~ exp[ (~ r4 )  (Cl  m 2 -  He CAM2)] 

• f l~Z (ds~) II [q)c(Sc)i II  [qo~(s.)[ (3.16) 
C~PIUF 2 uCF 3 
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Now we bound the moduli of the factors appearing in (3.16) in terms of the 
values of the spins of the corresponding blocks. 

If C ~ F 1 U F 2 U 1'3 

[q~c(Sc)[ <. ~, ~c(Sv) (3.17) 
V ~ C  

where 

In[ 1 + ~c(Sv)] 

= ~ ]Sx[2nL(1 + ~od)/d(V, V')21n[d(V, V') + I l F [ d ( V ,  V')] 
x ~ V  

for C ~ F  1, C =  { V , V ' )  

ln[1 + ~ c ( S v ) ] = 4  ~] Isx]2{ [ (L  - 1)ln(L + 1 )F (L) ] - I  + 2~0X) + 2o~nL6 
x ~ V  

for C E I' 2 where d(V, V') is the distance between the blocks V and V', 
if(r) = min[F(r), if(r)] [see (1.3) and (1.8)]. 

We have used [e r -  1[ < e lrl - 1, Vr E C, [xy I < (xZ + y2)/2, Vx, y 
E•,  [e x + y -  1[ < le 2 x -  1]+[e  2 y -  l [ , x , y > 0 .  

For C ~ F 3, ~?c(Sv) = 1 - XM(SV). 
Now we insert the estimates given in (3.17) in the integral on the 

right-hand side of (3.16) and expand the products, getting a sum of 
factorized terms. We call 2 R  the set of the maps D : 1 '  l tO F 2 U F 3 

(U~=-?Ai) U (m~=-pBi) such that D(C) E C. We get 

II I c(Sc)l II I  (sc)l 
C EF]uF2  C ~ T '  3 

D R C~FIUF2UF3  DE-~R 

Now we want to estimate a single term J-g.o appearing on the 
right-hand side of (3.18). We define a function r on fie tO ~p U We by 
r c = 1 for C E gp to Wp, r c = g(blocks of type A and B lying between V 
and V'} if C = { V, V') E ~p. 

Given a polymer R=(1'I,F2,1`3,1`n) , V~[ . . J ce r ,  ur2urC and D 
@ _~g, let r] v . . .  r~  be the district values, in increasing order, assumed by 
the function r on D -I(V) [we shall put k V - 0 if D -](V) = O]. Notice that 
k v < J~(O - I(V)). 

Let M(r) = M[r ln(r  + 1)] 1/2 and, for x E V, l(x) = { ln[d(x ,Z \V)  + 
1]} 1/2. We set, for 0 < j  .<< kv: 

_- [ 1, if Isxl < M(rjV)l(x)  
Xv,j(Sv) (3.19) 

0, otherwise 
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and 

Finally, 

Xv, o(Sv)  = O, xv ,  = 1 

YCvj (Sv )  = Xv,j ( Sv )  - X v , j - , ( S v ) ,  1 <~ j < k v + 1 (3.20) 

~kv + l -  We have ~ j =  l Xv,j = I. 

Now we denote by ~R ,o  the set of the maps F :  l,.)csr, ur2~r,C--*2+ 
such that 1 < F ( V )  <<. k v + 1. We have 

c)) C ~F1U ]['2 U I~3 
kv+ I 

V~[ .Jc~e ,ur2uvsCc~D (V) L j =  

F R,D V@Uc~P~ur2ur3CL C~D-I (v )  

--- (3.21) 
F C J-t~.z) 

We shall estimate the quantities 3--R,D, F in the following way. The 
contributions coming from "large-distance bonds" C ~ {p will be esti- 
mated with the upper bound on the moduli of the spins, implied by the 
presence of the functions ~'s, if this upper bound is sufficiently small. The 
contributions to the integral of the remaining factors will be evaluated by 
using the lower bounds on the moduli of the spins also implicit in the 
functions ~'s and the fact that high values of the spins are depressed by the 
superstable measure/~U. 

Thus we separate into two parts the product 1-I c co- '(v)~c(Sv) which 
appears in (3.21) and, using 7r162 V) = XV, F( v)( 1 -- Xv, rr v) - O, write 

C ~D-~(V)  

= (Xv, F(v)(Sv) CCD-I(v)  ~C (Sv)] 
v rc > rF( V) 

v rc < rF( V) 

(3.22) 
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Let us consider the first of the two factors appearing on the right-hand 
side of (3.22). If in this factor a C E D -1(V) N Jp appears, then necessar- 
ily r~v ) = r c = 1 and XV, F(v)(Sv)~c(Sv) = XM(Sv)[I -- XM(Sv)] = 0. In the 
case there is no such C we have 

xv, nM~v) H ~(sv) 
C~D -~(V) 

rc  >/ r~( v) 

< H exp[M2rcln(rc + 1)ln(nL + l)n2L 2 
C e D -  (V) n Cp [ 

rc  >~ rFV( v) 

x l + w d  ] -  1 
(r~L)~ln(,-~L + 1)i(r~L) J 

X II 
C E D  ~(v)n ~p 

v rc  >1 rF( v) 

exp 4M21n(nL + 1)nL ( L -  1)ln(L + 1)F(L)  

+2~0_~] + 8omL8 } - 1 

(3.23) 

For every M, n, we can choose L so large and ~o so small that we can 
bound the right-hand side of (3.23) by using the inequality ]e Ixl - l[ < 2Ix I 
which is certainly true for Ix] < 1 and get 

x~,nr162 H ~(s~) 
C E D - I ( V )  

v rc  >/rF(V) 

II 
C ~ D - ' ( V ) N ~ p  

rc  >1. V rF( V) 

• H 
C E D - I ( V ) N d ~  

v rc  >~ rF( V) 

[2M2n2(1 + r + 1)/rcF(rcL)] 

( [ 1 
16M21n(nL + 1)n ln(L + 1)/7(L) 

+ l&onL8 ) (3.24) 
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Now we consider the second factor on the right-hand side of (3.22). 
We have 

1-[ ~c(~)  
C E D - I ( V )  

rc <'< rFV( V) 

where 

C E D - I ( v ) c I (  ~p CITffp ) 

r C < r~ V) 

.~ e~.( xo~ I'~l~n~' +~ I ~ln~r~ + ~)~(r')l ' ) 
X exp(16x~v[Sx[2((Lln(L + 1)F(L)) - '  +wA-)+ 16wnLg) 

=exp(-~(n,w,L)x~vlSxl2+ 16wnLg) (3.25) 

"~(n,w,L)= n(l + wd) ~ [r2Lln(rL + 1)F(rl)]-' 
r=l  

[ , ] + 16 LIn(L + 1)F(L) + wA (3.26) 

We note that, given n, "~(n,w,L) < O([LlnLF(L)] -1) + O(Iw]). 
In the following formulas we shall omit the dependence of ~ on n, r 

and L and we shall assume that n, L, and w are chosen in such a way that 
,~ < A*/3. 

We put C =  f~v(ds)exp(-A*s2/3 + 8*) and, for every real M, we 
shall denote by )~M the characteristic function of the interval [0,M], 
x~ = 1-)?M. 

Using (3.25) and superstability estimates we get 

V EUcErLurEur3C C E D -  I(V) 
D - I ( V ) ~ O  v rc <- rE(V) 

< f lz~ (ds~) II ( e16~L8 ~,, ~(c(~,-,,,(x)(]Sx]) e~l~12) 
V ~ U c ~ r ,  ur2ur3C x ~  V 

D-I(V)O{C : r c < r ~ v ) }  = 0  

X X ~ ( I-I ~(M([sy]) e~l*~? II f(C(]Szl)e~l~f) AcV\(x) y~A zEVX(AU(x)) 
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< I] 
VEUcertur2ur3C 

D-I(V)n { c : rc< rFV(V))=/=fa 

x 

< 

<. 

D-I(V)n{C : rc<rFV(V)}=/-O 

X (e "~M2 + de-(A*/3)M2) nL 

It follows that 

el6~163 p(ds) e(9-A*)lsl2+6" I 
> M(rFV(v) i)l(x) ] 

2 (evM21a'(( v(ds) e{v a,)tsl~+8. IVl I~Xt 1 
ac V\{x} \ \ a l s l>  M 

i-I e 16wn L~ 
v~Ucer~ur2ur3C 

D t(v)n(c :rc<rFV{v))~O 

V r> v x M(rF(v) - Ol(x) 

X [ e~M2 + fjsI> MV (ds)e-(2/3)A*Is'2+8*]IV' } 

I"I el6'~ ~_a exp I - A* ] 
v ~ U c e r , u r ~ u r ,  C x ~ V  I. --5- M2(r~v)- l )Z2(x)  

(3.27) 

f ~tRN( dSl~ ) E [ I I X v ,  F(V) II(Sv)] 
V~Ucer, ur2ur3C 

D -I(V)~O 

]-[  c(sv) 
CED-I(V) 

r C < r~ V) 

< 17 
VeUcer,ur2ur~C 

D-I(v)A{C . v �9 rc<rF(v)}~O 

{ exp(1 6oanL6 )C exp[ - ( A *  / 1 2 ) M 2 ( r ~ v ) _  ,) ] 

X E r-(A*/6)M2 e(r + Ce-(A*/3)M2) 
r=l 

< 1-I C'(M,n,L,~ 
V ~Uc EFIuFzuF3 C 

D I(V)n{C:rc<r~v)}~O 

(3.28) 
where it is clear that for every M and n, we can find L so large and w so 
small that C'(M, n, L, oo) is less than some fixed constant C. 
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We observe now that for every block V there are at most four elements 
C's of ~p U ~  e UJp  such that V E C  and r c = l ,  whereas for r > l  
there are at most two C's belonging to @ U @ U Jp such that V E C 
and r c = r (in fact in this case they belong to @). Then, if )Q(r)= 
M(ln(r + 1)) 1/2, 

_ 1 1 ~] M2(rc) = ~ 2 371(rc) 
4 v CED-I(V)N{C :rc<rFv(v)) CED I ( v ) n { C : r c < r F ( v )  ~} 

<<. M2(r~Rv)_l) 

It follows for L, w: C'(M, n, L, w) < C: 

;t~Z(dSl~) H [1--Xv, F(V)-I(Sv)] 
g E UCEFI U P2U F3 C 

D t ( V ) ~ O  

< II 17 
vEucEr, ur2ur3C C@?pu{#uJ? 

v D-I(V)r C~V, rC<rF(V)-I 

I-I epc(S~) 
CeD-~(V) 

v rc < rE(V) 

By inserting in the decomposition (3.22) the estimates (3.24) and (3.29) 
we get for every D E .CR and every F E 3' R,D : 

3-R,o: = f ~Y(ds~) 17 ~v, nMs~) I] epc(~) 
V@UcErlur2ur3C ~@D -I(v) 

C E F I U F 2 U P  3 

(3.30) 

where if C E ~e U Jp:  

= max( 16M21n(nL gc 
1 

+ 1)n ln(L + 1)/7(L) + wLA] + 16nLo~6, 

Ce-(A*/48) M2 } 

and, if C E ~e ; 

& = max{2M2n2(1 + wd)ln(nL + 1 ) / rc f f ( rcL  ), 

(3.31) 

C e x p [ -  A* M21n(rc 
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We can now bound Y n ,  using combinatorial estimates of the cardi- 
nalities of 2 n and ~-n,o �9 We have 

D @~-~n F ~ - R , D  

< E H [kv (D)+  1] H & 
D E-@ n V ~ U c ~ r ~ u r 2 u r 3 C  CEFIuF2uF3 

C@FtUF2UF 3 
< 2 H (2gc) 

D ~-~n V~UcEr~urzur3 C 

The last inequality comes from the fact that VD E 2 R 

E kv(D) < ~(r, U r2 U r~) 
V E U c  ar~ur2ur3 C 

Since (k + 1)(1) * < 1, Vk/> 0 and ~t_@ R < 3 l*(r'ur2ur3) we have 

3-R < H 6go (3.32) 
CEFIUF2UF 3 

and the thesis of the lemma follows from (3.16), (3.32). 
We can now easily obtain estimates on ~N from those on fN given in 

Lemma 2.1. Choosing M such that (2.7), (A8) hold we have for every 
N >  No, L >  Lo, M >  M 

3 <. (vv, x~) < (vv, xM) <- 1 

3 j U - '  <[ vexp(h/2),XM~. -l/z] < J F  (3.33) 

J R  4 ~ " 2  

For every polymer R we have that 

IRI < 3 ~(r'ur2ur3ur4) (3.34) 

where I RI denotes the number of blocks of type A or B contained in /~. 
Using (3.33), (3.36) and Lemma 3.1 we obtain immediately for every 
polymer R = (F1,F2, F3,F4), 1/2 < o < 1 any given n, N /> N 0, M /> M: 

1~7( R)I < olRI H gc (3.35) 
C EFI UF2uF3UF4 

where gc = 23~/4gC, if we choose L, ~0 - 1 big enough. 
We have obtained estimates on the activities of the polymers which are 

independent of N. This allows us to remove the cutoff N. 
Let, for L > L 0, Xc = limN-,~2tN,Z. (see p. 2 of Section 1). Without 

worrying about the uniqueness of the limits, which would be, however, not 
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difficult to obtain, we can find a subsequence N i such that 

3 < .lim (VL,N6L,N, , XM) = (V6, XM) < 1 

3 J - 1  < lim [VL,Nexp(--hL/2),XMX~,IL/2] (3.36) 
i---> ~ 

< ~J/ = [  vexp(--hL/2),XMXL '/2] 

where the notation (v6, XM) and [v e x p ( - h L / 2  ), XM~[ 1/2] is just formal and 
is used to remind us where these terms come from. Similarly we can assume 
that for the same subsequence Ni, 

lim gNI(R ) = # ( R  ) 
i--> oo 

for every A; and for every polymer R in Ap. We can also assume that if R 
is such that R AA(A_p U Ap} = O ~'(R) does not depend on p and ~(R') 
= ( ( R )  if also R ' A ( A  ptOAp)=O, and R is obtained from R by a 
translation of an integer multiple of (n + 1)L. 

The ~'s of course satisfy the estimate (3.35). The former remarks 
permit us to express the complex valued partition function in the volume A; 
as 

ZA~(r ) = lim Z A N(O~) 
N---> oo P' 

~--- h2p(n+ 1)+1[ I) exp( -- h L / 2 ) ,  XMhL 1/2 ]2(L)/~, XM) 2p-I  

xl+  
k>! 

E __I-Ii g (R i )  
R I . . . . .  R k i 

l~i c Ap 
Ln hi=o, i~j 

(3.37) 

The first equality in (3.37) follows from the Lebesgue theorem, the last one 
is obtained from (3.11) by letting N tend to infinity through the sequence 
of N i. 

The proof of the analyticity follows now straightforwardly from the 
decomposition (3.37) and the estimates of the activities of the polymers 
given in (3.35), by the method of the cluster expansion, that is based on the 
following lemma: 

Lemma 3.2. Let 
k 

= l + E E I I  #(R,) 
k>~l R~, . . . ,Rk  i=1 

RicAp, RiN l~j=O, i ~ j  

(3.38) 
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and 

K = ~ gc + 4g{Ao.A, } 
ce~pu~ 

C ~ A o  

For any given o, 1/2  ~< o < 1 n, L, ~00 can be chosen in such a way that, for 
every ~ < ~00, 

(i) expK < 1/I~/-o(2 - yco-)] (3.39) 

and, uniformly inp,  if If(R)[ < o lnlrr ,, I I C  EFt UF2UF3UF 4 6C 

(ii) sup ~ ]~(R )l 
VE(A~, - - p < i <  p ) O { B ~ , - p < ~ i <  p--1} R : V c R c A p  

(iii) 

where 

< oK[1 - (e x -  1)/(1 + o2e K -  2oeK)] = G(K,o)  (3.40) 

k 

E E [q0T(R1 . . . . .  Rk)l I-I [ff(Ri)[ 
k ) l  R I , . . . , R  k i = l  

R i = R for some i 

.< }  34,; 

1 qgT(RI  . . . . .  R k  ) -- k [ E ( _  l)~(edges in~,} 

y ~ C k ( R 1  . . . . .  Rk) 

and Jk  (R1 . . . . .  Rk) is the set of all connected subgraphs of the graph with 
vertices { 1, . . . .  k)  and edges (i, j )  corresponding to those pairs R i, Rj such 
that R i A Rj v a 0 and the sum is set to be equal to 0 if Jk  is empty, and to 1 
if k =  1; 

(iv) NA,(o0 ---- exp • 2 rpr(R1 . . . . .  Rk) I-I f ( R i )  (3.42) 
k>~l R I . . . .  , R  k i = l  

Proof. In Ref. 7 (see Lemma 1) it is proven that (i) implies (ii), (iii), 
(iv). (i) is a straightforward consequence of the definition of gc- Indeed, 
for given 1/2 < o < 1, we can choose M sufficiently large, then fi(M), 
E ( n , M ) , ~ ( n , M , L )  such that by choosing n > fi, L > L ( n , M ) ,  ~ < 
~(n, M, L), K can be made arbitrarily small. �9 

We can now prove Theorem 1.1. 
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Proof of Theorem 1.1. Using (3.37) and (3.42) if M, n, L, r are such 
that (3.39) holds we get 

lnZAp(o 0 = [2p(n + 1) + 1]lnX + 21n[vexp(--h/2),XM)t-l/2] 

+ (2p - 1)ln(v~,Xv) 
k 

+ ~ 2 q~ . . . . .  Rk) 1-[ f(Ri) (3.43) 
k>>.l R~ . . . .  ,R k i=l  

Ri CAp 

We note that the first three terms on the right-hand side of (3.43) do 
not depend on ~0 and, divided by lAp[, converge to a limit as p tends to 
infinity. So we need only to consider the last term on the right-hand side of 
(3.43). 

We shall denote by ~(R) the activity of R computed in a volume A e so 
A 

large that R A {A -e U Ap} = 0. It is clear that ~(R) does not depend onp,  
and is invariant under translations of multiples of (n + 1)L. 

Given p, let us denote by @ the set Ap\{A_ e tO Ap). We can decom- 
pose the last term on the right-hand side of (3.43) in the following way: 

k 

E y, . . . . .  Rk) II 
k > l  R 1 . . . . .  RI, i = 1  

R , c A p  

k 

= E E qPT(R1 . . . . .  R k )  1-I ~ ( R i )  
k > l  R 1 . . . .  ,RI ,  i = l  

s c a;~ 
k 

+ ~ ~ q~ . . . . .  Rk) E ~(Ri) (3.44) 
k > l  R I . . . . .  R k i = 1  

It follows from Lemma 3.1, that, choosing M, n, L, a00 such that K is 
sufficiently small, for every ~o < % we have: 

exp K < 1 / [  oe a(x'N)(2 - -oe  a(KJg)) ] (3.45) 

and then, if V E { A  i , - p  ~< i~< p}t0 {Bi,-p<~i<.K p -  1} 

~T(R1  K ~ . . . . .  R~) I ]  I ~((Ri) 
k > l  R t . . . . .  R,~ i = 1  

UF_,Ri n V ~ O  

< A~, [~(R)Iexp[G(K"~)IRI]/{I-]~exp[G(K' f~)])  
R : R FI VvaO 

< G(K, oeC(K'; ')/{1- ~-exp[  G(K,~- ) ]  } (3.46) 
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Of course (3.46) is still true if we replace ( with ~ for every Ap. 
Using (3.46), we see then that the second term on the right-hand side 

of (3.44) does not contribute to the pressure. Exploiting then the transla- 
tional invariance of ~ we get 

lim In ZA~(tO) 

lnX L ln(v~, XM)L 
- + 

L n + l  

k 

+ 1 ~ ~ cPr (R , , ' ' ' ,Rk )H( (R , )  (3.47) 
n -4- 1 k ~ > l  R I . . . . .  R k i = 1  

U~= d~in {AoU B0) ~0 
U~= 1/~i c [(L- 1)/2. + ~] 

It follows then from (3.47) that the pressure is an analytic function of 
~, for to < tOo, as uniformly convergent series of analytic functions. 

We have taken the limit on the particular sequence {Ap) just for the 
sake of simplicity, and the same result is true for an arbitrary increasing 
sequence of intervals tending to 7/. 

4. CONCLUDING REMARKS 

We discuss here some possible extensions of our results. 
(1) Correlation functions. The analyticity of the correlation functions 

in terms of the interaction parameters can be proven starting from the 
cluster expansion of the partition function. Indeed it is easily seen that we 
do not need the translational invariance of the complex perturbations, but 
just some uniform bounds of their strength, like those given in (1.8), (1.9), 
in order to express the complex partition function as an exponential of a 
convergent series of local quantities. Then, since the correlation functions 
can be seen as ratios between partition functions with locally perturbed 
Hamiltonians, it is clear that we can prove uniform estimates for these 
quantities by using the polymer representation. These estimates are still 
valid in the thermodynamical limit and the analyticity follows. Clustering 
properties of the correlation functions are also easy to obtain. 

(2) Boundary conditions. In the previous sections only the case of 
empty boundary conditions was considered. Our proof, however, applies 
with minor changes to boundary conditions such that the values of the 
"spins" in the conditioning configurations do not increase "too fast" with 
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the distance from A e. Here "not too fast" depends on the rate of decay of 
the interactions. 

(3) Uniqueness. Our results imply uniqueness of the Gibbs measures 
for a much larger class of potential than those considered in Ref. 6. There 
the author considered continuous systems of particles on the line interact- 
ing either via positive potential with a more than exponential decay or via 
superstable finite-range potentials. 

(4) Many-body potentials. Many-body potentials with an exponential 
decay in the number of interacting particles or spins can also be treated 
along the same lines of Ref. 7. 

(5) Divergent potentials. In the case of particles we can consider 
superstable potentials positively diverging at short distances and complex 
perturbations exhibiting at most the same divergence, by proving, for 
example, the analyticity in the temperature. Here we need some more 
probability estimates in order to control the collapses of particles. 

(6) Many-dimensional systems in strips. It is clear that our methods 
apply also to the case of many-dimensional systems of particles or un- 
bounded spins confined in strips of the type [ - a ,  a] ~- 1 x ~ or [ - a ,  a] ~- 1 
• 7/. Indeed these systems can be reduced to strictly one-dimensional 
systems by taking a suitable state space and our results apply also to this 
state space. 

APPENDIX A 

In this Appendix we shall prove P. 1, P.2, and P.3 of Section 1. 
In force of the hypotheses on the potential, the operator TN, L is 

compact and it is strongly positive in the following sense: Given the cone 

and, calling K ~ its interior 

K ~  (u ~ ~((~<u)g), U(S) > O) 

then 

T~,L(K\{0))  C K ~ 

P.1 follows then from a theorem by Krein and Rutman (Ref. 13, p. 267, 
Theorem 6.3) and from the symmetry property (1.18). In order to prove P.2 
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and P.3, we remark that, as a consequence of P.1, 

lim Tku,Lexp(--hL/2)/~kU,l~ = { f v N (ds)exp[--hL(S)/21~N,L(S ) }Vjv,L k---> oo 

lim exp(-- hlJ2) Tg,L/Xk,L = { f v N ( ds)exp[ -- hL (s) /2 ]VN,L (S) ) V'u, L k--~ oo 
(A1) 

where the limit is intended in the topology of the uniform convergence. 
It follows from (A1) that 

AN k---->oolim { f py 
• I 

= lim (2~Ap,N)L/(IA/- L) (12) 
k---~ oo 

For N l < N 2, 2"(Ap,U ' < 2~Ap,N2; hence, for every L, the sequence ?~N,L is not 
decreasing in N. From the superstability hypotheses (1.4) and from (1.3) it 
follows that there exists L 0 such that for L > L o and any A c ?7: 

A isxl _ 8)  (A3) HA<L(sA) >/x~A (-- f 

Then for any L > L o and any N > 0 

~ A gAp,N = ;PA N (dSAe) exp [ -- HA<eL(sp)]<~ (;P (ds)exp[- ( ~  ]s[2- 6 )] }[Ael 
(A4) 

This proves that, for L > Lo, X/~ = limN_~o~hN, L exists and satisfies 

A (A5) 

Let now the correlation functions of the block model with only 
nearest-neighbor block interaction be defined as 

pAp,N(S~)= f vNp\A(dSAp\~lexp[--H~L(SAp)]/iAp,N (16) 

Following the proofs of Proposition 2.7 of Ref. 9 and Theorem 2.2 of Ref. 
10, it is easy to check that there exist No, A* and ~* such that, for every 
N > No, L > Lo, A,p with ACAp, 

pAp,N (SA)<<.exp[--x~A(A*lsx[2--'*)] (A7) 

P.3 is then a straightforward consequence of (A1) and (A7). 
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We also remark that it follows from P.3 and Proposition 2.2 that one 
can choose M such that 

/~((Y<<N) KL) < sup [U(S)/V(S)I sup [a(S) /g(S)]  
s~J~ r  s @ J ~  

f ~ ( d~) a ( ~) r~,-~ ~ ( s, ~').( ~ ' )~  ( d~') 
x 

r k - '  (s, s ')u(s ')x ~ (s')u N (as') f . [  (d~) a(s)xu (~) N,~ 

< ( 4 ~/~) 2 (AS) 

where JU does not depend on N, L, and k. 

APPENDIX B 

In this Appendix we prove the following: 

Proposition B.1. Let M > 1 and let the sequence (ak)k~>l satisfy 

(i) a~ /> 0 

(ii) a I >1 e -a'M2 

(iii) ~ a k = 1 
k=l  

(iv) a~ < exp(d2M 2 -  ke -d~M2) 

where d 1 , d 2, d 3 are strictly positive constants. 
Let the constant o and the sequence (b~)k~>0 be defined by 

a = ~ ka k (B1) 
k=l  

1 for I~1 < 1 (B2) 

Then there exist d~, d~ > 0, depending only on d l, d 2 and d 3, such that 

Jb k - a[ < exp(d{M 2 -  ke -d~M2) (B3) 

It is clear by simple probabilistic considerations and by (2.23), (2.24) 
that we can apply Proposition B. 1 with appropriate constants dl, d2, and d 3 
by taking a k = eIIe~, b k = IIe~ and o = %. 

Proof. Let us define q~(s) as 

�9 (s) = 1 - ~ ak Sk (B5) 
k=l  
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we have  ~(1)  = 0, ~ ' (1 )  = - - ~ = l k a k  = - - o  - l .  ~ ( s )  - l  has  a pole  of o rde r  

l i n s = l .  
W e  have  Ress= lq)(s)-  l = q) ' (1) -  1 __ _ a. 
N o w  let us def ine  

F ( s )  = q ~ ( s ) / ( s -  1 ) =  ~ CkS k (B6) 
k=0  

W e  have  

and,  f rom (iv), 

C k ---~ - -  1 - -  a l = - -  a I 
l = 1  l = k + l  

ICkl <. a e - ~ k + ' )  / ( 1  - e -/~) (B7) 

where  a = e d 2 M 2 ,  • = e - d 3 M 2 .  Therefore ,  for  Is] < e ~ 
09 

IF'(s)[ = k~kc~sk < alsle-2~(1 -- e ~) - ' (1  - - Is le-B)  -2 (B8) 

Let  s = re i~ with r < rain(e/V2,2)  

IS( )l = F O )  ifo~ + e s~ rF' teS~ dt 

/> 1 - I O l [ a e - 2 B (  1 - e - B ) - 3 1  

r 2 -  1 a e - O / 2 ) B ( l  _ e - / ~ ) - ' ( 1  _ e - B / 2 ) - 2  
2 

3 a ( ]  _ e - / ~ / 2 ) - 3  >/ 1 - ( [ 0 ] + [ r - l [ )  

T h e n  IF(s)l/>2' if max(101,1r- l[) <2(1 - e-p/2)3a = y. N o w  let Isl 
= 1, s = e i~ 0 ~[-Tr, w], I01 > y. 

 lakSk  Re(1  laksk ) 
= a l ( 1 - - c o s S ) + k > 2  ~ a k ( 1 - c ~  /> a l ( 1 - - c o s 0 )  

so that  if s = re ie, 1 < r < min(e~/2 ,2) ,  0 E [ -  ~r, Tr], ]0] > ,/, we have  

[~(s)[ = ~ ( e  '~ + e'~ f l " ~ ' ( t e ' ~  

/> a,(1 - c o s 0 )  - 3 ( r -  l ) a e - ' / 2 ( 1  - e-• /2)  -2  
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Therefore,  if r -  1 < 2(1 - e-B/2)2al(1 - cosy),  

I~(s)l > a l ( 1 -  c o s 0 ) / 2  

Let 

R = min(�89 - e - e / 2 ) 3 / a , 2 ( 1  - e - e / 2 ) 2 a l ( 1  - cosy) ,ee /2 ,2 )  

and let Isl = R, s =  R e  '~ , 0 ~ [ - w , ~ r ] .  If [01 > y, then 

1 o < 1 o 2 1 
�9 (s) 1 - s ~ + i s -  11 < al(1 - cosy)  + (1 - cosy)  1/2 

Ifl0 <y  
=[  ] 2 l + ~  1 o 1 + o F ( s )  1_.__[__ < 

O(s) 1 ~  s - -  i- " I F ( s ) l  ] - s 

On the other hand, 

1 - s  - 1 +  s l = 1 + o  c z s k 

OO OO 

(where we have used the fact that ~l~oCt =--~]~k~176 = - - 0  
[dk[ < ae -2~ (1  -- e - B ) - 2 e  -Bk.  Therefore for s = R e  i~ 10l < Y: 

OO 

1 o < 2ae-213(1 _ e-/3) -2 ~ R k e - ~ t ,  
kb(s) s -  1 k = 0  

~< 2ae-2B(1 - e-/~)-2(1 _ e - B / 2 ) - '  

F rom (B10), (B11) we have that if Is] = R, 

I 1 o 
d~(s) s -  1 

[ a , ( l  1 1 < max -cosy)  + 

= 8  

Now, since 

1 o 
q~(s) s -  1 

(B9) 

(1 - cos y)1/2 ' 

(BIO) 

- 1) with 

(B l l )  

2a--s ] 

(1 - e-e)2(1 - e -e /2)  

(B12) 

- ~ (b~ - o)s k, 
k = 0  
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we obtain, denoting by C R the circle with center O and radius R, 

Ib -ol= . s - 1  

< 1 2~rRma x 1 a R-(k+0 
2rr s -  1 

< 6R  - k  

that concludes the proof. �9 

NOTE 

After this paper was submitted, J. Lebowitz made us aware of the 
existence of an unpublished manuscript by O. Lanford, in which he 
proves the analyticity of the free energy for one-dimensional systems of 
particles with finite-range superstable interaction and the uniqueness of 
the Gibbs state and the continuous differentiability of the free energy for 
infinite-range superstable potentials decaying sufficiently fast [essentially as 
r - 2 ( l n  r ) - ( 2 + , ) ] .  
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